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1. INTRODUCTION M

"-:;e limit of

It has been known for a long time that heavy traffic limit theorems in que-

$ons, ucing theory are but a special case of the so-called Iliffusion approximation in

Physics and Genetics. Take for example Kingman's (19(2) heavy traffic approxima-

:ndary conditions, tion for the stationary waiting time distribution foa i. sequence of GI/Gil/1 queues

Q(o) depending on a parameter a. Denote the waiting .:'me, excluding service, of

queues with the ni
t
h customer by W(n,a) and let U(n,a) = S(n,.,; - T(n,a) where S(n,a)

service tiue of the nth customer and T(n,a) = inter atrival time between the

nth and (n + l)st customer and assume E(U(n,a)) = --o, variance of U(n,a) =o
2 ,

-.yst,. > 0. Then we have the following Theorem 1 (Kingman 9152)):

lim P((aL/o)W(n,a) <x) -l-exp(-2x), O<x< , provided l a n 2

- :-ring, in :-' f '- O

Somewhat later Kingman (1965) presented a more el-gai.t but heuristic proof of

* Reidel, 19SI. this rsult which justifies referring to such a theorca as a diffusion approxina-

jand tion. It is worthwhile sketching the heuristic proof o' Theorem 1 here, referring

i rcb" Zt. h, X, the reader to Rosenkrantz (1980) for a rigorous proof azs well as an estimate of the

rate of convurgence. To begin with, one notes that
..ts and 5inl512

4nd .... J (1.1) F n,(x) = P((a/O)W(n,a) < X) = P(<sUP2  Yn t)x 0

4 (1976), 1, O~t<n 1 nC

LAM. where yn,(t) is a certain stochastic process with coittnuous paths. One can

and storage then show, frrally at least, that

Co (1.2) n y= y(t)for n- (,-10 ' t 
=

i

"f the

-f the where y(t) w(t) - t. Here w(t) is the standard 7- imensioual Wiener process

and so y(t) is the Wiener process with negative dri(C. It follows at once from

(1.2) that

(1.3) im P( Su yn(t) < x) "- P( sip v(t) x)
n" ,%a -0 0<.t, ',t n5_t <®

and an ea.) calculation, see e.g. Karlin--Taylor (1975;. p.361, yields the result

that P( sup y(t) < x) - I - exp(-2), 0 ._< x < o.

Anothcr and simpler ex;mple of a ht-avy traffi J4i1t theorem is the following.

let N,(t) dinott- the quitijtl ;izi. o an i,'NI I que., v: th arrival rate 'n- mean

| ef".... -
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rervlce time di;tribution and traffic intensity p = n " Assume n = 2. STAT.IENT AND F
- n n n 11

'I - An for some >, > o 0 < L'n < I and denote by o2 the variance of Let X(t) den.

the service time distribution .hihih in this case equals -
2  

cess) with release

2 2 to be a compound Po.

lIF'OREM 2: Assume I = lim m = = i 9 so 1i mn f 
1, and lIm 0 n the cumulative dist-"",- n1 the cuuatv ds

then in . (nt)/.i = y(t) re y(t) is the Wiener process on R+ rO,-) with Pinsky (1912) haven

I. 2'm " 3re stochastic integral
varianc, + e 2 1 , ne*3t + 2 rift . and reflected at the origin. Theorem 2 has

been extnded in ManV waV; 1., by 11.nY authors including Iglehart and Whitt. The (2.1) X(t) X(
survey art icle by Whitt (191 '; a useful reference for the reader interested in (t)

A(t) = E S wh
these dL.'lopr,:ents. i=l

In each of the heavy tt 'c limit theorems cited ahove the limit process has is a Poisson process

turned out to !. the Wiencr -ess irLh a neative drift satisfying, where appro- non-negative, non-c-.

priate, a reflcct ing hour;a r .ndit ion. Recently Yamada (1982) has gi-.:en a dif- now on we also assu=.

fusion approxii:ation for ai ...*:ce of storage processes X (t) where the limit

process Y(t) is no longer 'eil er proce-s with a negative drift but is instead Flan k =Fol lowing Yama.-

a Besel process with ne.:t rift. Thits re:;ult is of more than routinc: interest.

It shows for erample that r!- -t of possible lirit processes that can occur in (2.2) Xn(t) = X

(iueueing and ;torage theory: a much larger class than Theorems 1, 2 and the sur-
is a seq,--

vr ,v article by Whitt (1974) :d load us to believe existed. In addition Yamada's N~ (t)

thecren (a pr.cis;e version of "ch will be stated below ais Theorem 3) offers a A (t) 7 i

challenge to tiLe traditional :hods bv which such limit theorems are usually t1.

proved. In particular, neith. = the Trotter-Kato-Kurtz method cf Kurtz (1969) nor (2.3) r > P0n

the martingale method of Papn.uolaou, Stroock and Varadhan (1977) are directly ap-
plicable to this linit theoreti because of some nontrivial technical problems of (2.4) x( n - r

n
independent interest and the 'utions of which are also of independent interest.', 1/Z

It is the purpose of this pnp'w:; to give a new and simpler proof of Yamada's theorem (2.5) lim n

using some results due to BroR., .osenkrantz and Singer, with an appendix by (2.6) i fk

P. D. Lax, (1971) which, rest. 'd in the more modern terminology of today, implies n

that the martingale problem f, the operator corresponding to the Bessel process (s(2.7) spX~r

with drift has a unique solut4.n - see Stroock-Varadhan (1979) and Ikeda-Watanabe nx>O

(1981) for a general discu:;si,. of these ideas. It turns out however that the es-. I " (2.8) X_(0) = .
* timates we needed to make the -artingale methods work already imply tie strong con- (

vergence of the semigroups in te sense of Trotter-Kato - see Theorem 4 below. (

' These as well as other results from Functional Analysis are collected In an appen- c(29 -i

dix. We shall also use the stanlard notations: C (R) f: f bounded and con-
•" tinuous on R+ = [0, ) and lira (x) = (), f ")(x) = derivative From these conditi.

+ bounded: {i 1, {-
ff E C (R ):f ,

) 
C_ (R+), x < I " k). We make C (R ) into a Banach space in the 2by giig h - 0 ({i.n} is a bounded

usual i norm = sup If(x)!. The symbol U denotes the 2 . ...

O.x < implies [. X $ t

end of a proof.

AIR 101" 1 L-tln (V SCTENTIyIC R SEL (M.N" OITI CZ Or 17"Wirr r0 DT', 7

Dlstrlbuotoa is u01MIted.
XA J1. XI'z
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Assume X 2. STATEMENT AND PROOF OF YAM)A'S DIFFUSION APPROXIMATION.
n

the variance of Let X(t) denote the content of a dam at time t (also called a storagu pro-

cess) with release rate r(x) and random cumulative imput A(t) which is assumed

2 2 to be a compound Poisson process. The jump rate X Is assumed to be finite and

I ; the cumulative distribution of the size of the jump is denoted by F(%). Cinlar-
n-

71 = fO,-) with Pinsky (1972) have show-n that X(t) may be realized as the unique solution of tht

S in. Ihorem 2 hl;is stochastic integral equation

6':1 and Wiiitt. 111, (2.1) X(t) = X(O) - r(x(x))ds 4 A(t), where
.der interest d in NA(Ct)o

A(t) 
=  F Si where the Si are i.i.d. with common distribution F and N (t)

limit procts<: ii.i, Is a Poisson process with intensity X. The release rate r(x) is assumed to be a

"ing, where appre- non-negative, non-decreasing function with domain R+ = [0,",), r(O) = 0. From

has ginanow on we also assume that r = lim r(x) is finite. We set o. = Y dF(y),

where the lit it I&
°

J

it but it; in;t-d 1 = i 1 and k 2
-+n routine interest. Following Yamada (1982) we make the following hypotheses:

-it can occur it) (2.2) Xn(t) = Xn(O) - rn(Xn(S))ds + An(t), n = 1,2,...

1, 2 and the sur- 0

. addition Ysl:t Is a sequence of storage processes with release rates rn(x),
N (t)

rem 3) offrs An (t) y Sn, P(S. < y) = Fn( ) satisfying the normalization conditions:
- are usually n

Kurt7 (1969) n, r (2.3) r k- 
1On O n p"1 ryi dF=

are directlv al, n n n n 0  n

a) prol -,i,; of4) ( -r n  )
(2.4) x 6 n (x - c < as x- , n-'0

SCendent intt, ret
1/2-- )/ =

If Yam;lda's thiiortm (2.5) lim n (rn - n)/k n  d,

append i,: lin-v 2
(2.6) lim k = k > O, k

2  n
of today, itp|li i,; n n Xn 2

(2.7) sup x(7 n - r n(x)) =M < o

n sx>O
4,tever that the c"-

:,]y the st roni: con- (2.8) Xn(O) x n ,  lir xn/knn n x

.oremr 4 below. ( 2

fcted in art il it- (2.9) lir dF(y) = 0 uniformly in n.

iirrn ) ;ind ci ri- Ce {y>C }

:iv. of f, Ck (1: = From these conditions it is easy to see that each of the following sequences is

bounded: (2n) .{ {ln} and r For (2.9) Implies that
,na rch space ill t il2'2 1 n n

denot,.s tire 21n is a bounded sequence and a o~rLo r so is {un}. This together with (2.6)

implies (x) is bounded and the other statements are proved in a similar fashion.

4I

4- .o'
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TIIEOREM 3 (Ymadi): St Y It ,  X (,it k 1 and assume conditions (2.3) through Gnf(x) -

2..) hold aind that I IrI Y ()) . iht-n (t) conver;es weakly to a Bessel pro-., nn "(2.14)

tes-; with nog.tive dlrift Y(t). .;tarting at x. Y(t) is a (Markov) diffusion 1t(O) -

proce,.; on Rf [o,) whi,;. izrinittiiiin.l1 generator is given by /
(2.10) ;f(x) (1/2)f"(x) + fr/k2)(f(x)/x) - df'(x).

R,ma.irk.;: (his is not the for, i, whi-h Yamada states his theorem. Spcifically, he See for example CinLo !

,w ; that Y(t) ,(t) whrC Z(t) is the unique ,;ulution to the stochastic in- where the operators

it.l .,iu-tt ion: some detail.

(2.11) Z(t) = Z(0) (K - Zd. (sJ)ds + 2V J.Ts)dw(s) DEFINITION: D(G)

2 at -

where K - I - 2c/k and w is the standard Wiener process. Thus Z(t) satisfies

t- ;tochst i differential equation Later on, in Append::

finitesimal generatc-
dZ(t) - (K - 2d7.,dt - 2,' (t)dw(t)

(2.12) b(Z(t))dt ! (7(t))dw(t) with terizing D(G) is

b(x) (K - 2d, ) , x > 0 and a(x) = 2rx this was already do--,%

the case d # 0 is -

t ice that tieither a(x) nor () (when d 1 0) are Lipschitz continuous and -df'(x) is relativ-

the ,-xistence tf a unique ,o:urion to the ste.'-ha-;tic differential equation (2.12)
(2.15) Bf(x) = (

iS nt .i trivial ;attecr. 1 Ie v:: oftcnce tf a unique solution is bowever a conse-

1,ien,'e of a more goner-al rt.ult due to Iabe and Shimizu (1975). Before proceeding in the sense of Kate

tour ,,i'n roof let o,; skt. t'.- idva behind Yamatda'-, proof. He first shows that way we can give a qu_

ti, processes Yn(t) "r", tight Tn !1[(,T] aid that If Y(t) is any limit then
y(t)2

7(0) = isolves tie tii:ile problem: IMMA I: For every

(2.13) f((t)) - f(z()) - K 2d).Y(7))f'(Z(s))ds vergence is uniform

SupjjG nf(x)JI < W-

n- 2
t 

,*'(s)l"(Z(s))ds is a zero meann
S2i rPROOF: 

Using the Ta"

martingale for every f F C 2(R). C 2R) is the set of twice continuously differen- where R(x,y) (1/:
K K

tiable functions, with compact suVport. This shows that every weak limit solves

the martingale problcm (2.13) whic-, thanks to the results of Okabe-Shimuzu, op. n~ n  f(x
0

,-it, is known to have a uniqoe solstien. '"he proof that Z(t) is a solution to

the martingale problem (2.13) is almost 5 pages long and the proof that the pro- nX

cesses {Y (t)1 form a Light seq-jence is nearly 6 pages long. It is the purpose
n where 1 2R(n)l :S nl._

of this paper to give an alternative proof of this result which wo! believe to be 2 n

easier to follow and is also somewhat shorter. First we shall give a heuristic lim R(n) 
= 0. On th,:

proof and put in the (tedious) details elsewhere.

We begin by observing that n(t) is for each n a Markov process on the (2.16) G n(f(x)

half line R
+  

([0,
"
) with infinitesimal generator Gn given by since nX n k /

n n

sic Sll/nr

6g . . .. .. . . .- . .. . . "? . . .
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ions (2.3) tiiugh G;f(x) =- (Inlkn)r (kbl,,*7x)f'(x) 4 Un[f txy) - f(x)]dli (y)

to a Beg*: -l pro- n r x and n+.)(2.14) f for _x > 0 and
; v) d ttu~.i 'n C f(O) n n  [ f(y) - f(O)]dln(y).

0

Here Hn(y) = Fn(k nn.v).

" Specifically, h,. See for example Cinlar-Pinsky (1972), Harrison-Resni:k (1976) or Rosenkrantz (1981)

- -he stochast ic in- where the operators C and their domains (both strcr:g and weak) are discussed in
n

some detail.

DEFINITION: D(G) = {f c C2(R+):f'(O) =.0), where t'. - operator G is defined

Us Z(t) satisfi es at (2.10).

Later on, in Appendix A, we will show that D((;) is -:,e domain of the strong in-

finitespial generator of the semi group T(t)f(x) = .(f(Y(t))). Of course, charac-£

terlzing i)(G) is not, in general, an easy matter bu: in the special case d = 0

this was already done by Brezis et al. (1971). The c,-,-nsion of their results to

the case d 1 0 is carried out in this paper by shofi.,+ that the operator Cf(x)

continuous and -df'(x) is relatively bounded with respect to the Be,.l operator
;al equation (2.12)

,g've act~ ;.-(2.15) Bf(x) =(1/2)f"(x) + (¥/x)f'(x), Y > -1/2,

Before pro,,(Vdint; in the sense of Kato (1976) cf. Appendix A. With thtv preliminaries out of the

first how; that way we can give a quick heuristic proof of Yam;ada's t~iorem by deriving the

any limit then

LEMIIA 1: For every f E D(G) and x > 0 we have ]."G nf(x) = Gf(x); the con-
n

vergence is uniform on every interval of the form . 6 > 0 and

Sup IIG1f(x)l < '.
n

PROOF: Usin the Taylor expansion f(x4y) - f(x) = f'(>:)y + (1/2)f"(x)y
2 

# R(x,y)

":lnuousiy differe.n- where R(x,y) (1/2)(f"( (y)) - f"(x)) and x < ,(y < x + y, we see that
: limit solves

o solue.p. nXn  [f(x + y) - f(x)]dH n(y) =

a solhution to 0
that the pro- nn f'(x) ydhl(y) + (1/2)n2nf " + R(n)

* is Ltt. p0r, c Y t 
y

helier,, to h' where 12R(n)I < n J[f"(r(y)) - f"(X)]ly2dfl(y) In a moment we will show that

a heur I ;t" 1ina R(n) = 0. On the other hand ydiln(y) = w .lklv and y 2d 2/kn so
Sn JOo) O0

" r,c( .. on the (.'.16) C (f(x) = [-(V' fkn)rn(k ,rffx) + ('nhn/k )]t (x) + (1/2)f"(x) 4 k6n),
n nn n

since nXnpt /k Al n atnd n,,ln/k2
n = I - see (2.3) and (2.6). Adding and

nin /n n2 nt

R7_ 7-

4_

.................................... •' ."... ."-. -.......................
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subtracting the term (vrn/kn)r f'(x) to the right hand side of (2.16) we obtain .EMMA 2: Under ti.-

such that "

G f(x) = (vT/kn)(r - r (k ,rn-x))f'(x) + (,r/-/k )(p n - rn)f(x)
n n , n n n nf'X

+ (l/2)f"(x) *- R(n). (2.17) 1r su:-
n

For x > 0 we have (n/k r rn(kn x))f'(x)=knWx/k 2)(r- r (k n/nix))f'(x)/x Setting aside
n)n-n nV"-.X n n n

consequently (2.4)(2.6),(2.7) imply that for x > 0 rim (rn/k )(r - rn (k n-x))f'(x)= strong convergence
n nf 11 nl

(c/k
2
)f'(x)/x and the convergenice is imiform on the interval [ I,). lypothesis

(2.7) implies that the term i tni formly bounded in n and x. Similarly con- IHIIEOREM 4: Under

dition (2.5) implies lir (vrn/kn)(r - n)f'(x) = -df'(x). 'lhus the lemma will benn n (2.1i8) 1 im 1 E.

proved if we can show that lin R(n) = 0, where n+

yd y(x 2 where the converge.-
12R(n) < nXn f(())-f"(x) i (y) n f1f"(F(y)) - f(x)Iy din (y). to the proof c0 iu totnktoo ,

Now for e small enough If(r()) - f"(x)I <. and this together with the fact characterizing the

that n am ydHn(Y) 
< n u 

1
0 ;diln(y) = I implies that the first summand in the fined at (2.14).

00

expression above can be made arbitrarily small. As for the second summand aIi~yd~nY) 2 I . ~ dFIV A 3: 1.e t G

change of variable yields the formula nX y 2dH(y) - (n/k2) (z) 3t
n n storage processes.Ek n,/n-c

which goes to zero by hypothesis (2.9) and the fact that both X and k
2  

are Case 1:
n n

bounded. (1(2.19)

It Is easy to see that li, C f(0) / Gf(O). Because Gf(O) = (1/2)f"(0) + (2.20) Case 2:
• n

(c/k2)f"(0) - df'(0) = (1/2 + c/k2)f"(O) since f'(O) 0 and f E C(R) r-

y PROOF: This theore':.

lies f"(O) = lim '(- On the other hand (by (2.14)) G f(O).= nAj (fMY) -of Rosenkrantz (19x n ' n ffRsnrat 1ex-O~

f(O))dlln (y) and using a two teri Taylor expansion as before we get that Clearly D(G)

tion
lirG n f(0) - (l/2)f"(O). Thus the only time G f(x) converges Gf(x) for allo n
n. -

4- is in the special case c = 0. i.e. when the limiting process Y(t) is (2.21) T (t)f-

the Wiener process with a negative drift reflected at the origin. This phenom-

neon of convergence of te generators except at certain exceptional points is cf. Du=-

quite common and occurs even in the example of Theorem 2 - cf. Burman (1979) p.
1 7

.

Nevertheless, it has been observed by several authors including Papantcolaou,
x c[J-) and 0

Stroock, Varadhan (1975), Burman (1979) that weak convergence of Y (t) to Y(t)
n Thus (Cn - G)T(s)

can be proved, provided one can show that the occupation time of the exceptional

set by the process Y (t) can be made arbitrarily small as n '. In the present llTn(t)f(x) -T(:r I
fI [0 .] (Yn(S))ds

context we must estimate f[ which is the occupation time of the0since T (t) is a
n

set [0,6] by the process Yn(t).

ti

.. -. •
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. 16) we obtain LEMNA 2: Under the hypotheses of Theorem 3 there exists for any c > 0 a 6 > 0

such that)f(x)

(2.17) lim sup E x  I[0g(Yo())ds r
n- f

V . -rn(knvn.x))f'(x)/x Setting aside the proof of (2.17) for tile moment let us show that this implies

r r (k n' .x))f'(x)= strong convergence of the semi groups.

", . Hypothesis

Similarly con- tHEOREM 4: Under the hypotheses of Theorem 3

--the lecons w.ill be
(2.18) lim 1jEx(f(Yn(t)) - Exf(Y(t))[I liia iTn(t)f(x) - Tr(t)f(x) = 

0,

n-

2 where the convergence is uniform for t t compact subsets of R+. Before proceed-
y dlin (y)

ing to the proof of Theorem 4 we need a result due to the author, hosenkrantz (1981),
er with the fact characterizing the domains lD(GI ) of the integro-differential operators Gn  de-

summand in the fined at (2.14).6
- summand a

z 2 dFn(z) LEINA 3: Let Gn  denote the strong infinitesimal generator of the normalized

. r'n.c n storage processes. Then

2
and k are Case 1: If rn(x) =r X > 0, r (0) = 0 we have

(2.19) D( n ) { c U (R
4
):f'(O) = 0}

(1/2)f"(O) + (2.20) Case 2: DG n) = {f (R+):rn(X)f'(x) C(R+), litarn(x)f'(x) = 0)

2(n) ={c (R)nx) X C x.0 n0
* C0 (R )i-

PROOF: This theorem is proved in exactly the same way as Theorem 4.6 on p. 219

n n Y(f(Y) - of Rosenkrantz (1981). Ci

t that Clearly D(G) D(G n ) and hence for every f o D(G) we have the representa-

f(x) for all t 00

:oIcess Y(t) I:; (2.21) T (t)f(x) - 'r(t)f(x) = - -

This phieim- 
0

1 points 1,; cf. Borman (1979) p. 14, formula 2.2.

".an (1979) p.
17

.

".':anii l at'u, We patv,.tt' introduce sont, notation: If g(x) is a function !.et gd(x) = g(x) if

tox ,[A,.) and 0 ot erwi s and put g , (x) = x) - g (x) so g' (x) + g6(x) =g(x).
(t ) to, Y(t)

n t excpt IcaTa (1G - 6) (s) f (x) (c - ()'I (s)f)5 (x) + [(Cn - 6)l s)f) 1 (x) and therefore
hEit;i' 'n('a n nr~ -)[( l '1

t 0In t e r,!citII,( f( )- I" (t(< ) f;)'lj(.)f d(x)ds + r •n (t-s)[((;n  - ;)'i (.,)f] (x) dsj]

. 'a. time of the
since ' (t) i:; a contraction semi group.

n

S;: . - + .: . _ • - . •? .. - ., > ... :

C , .: : . .. j . . . ' ' .: ... . ., + . ..... ......... .... .. ..... ...:.... .. .. . . . .. ... .
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For f c 1(;) the apivl esatinkate (A.8) uand lemma 1 together imply (2.26) (/n/kn)r -
lira (C - C)"(s)f(x) = 0 unifcrnly ol [5,",) and uniformly in s, 0 < s < t.

n
t By (2.7) lrm

Con ;equently limj ] L(C
n 

- C)r(W;) (x)llds 0. 0i llarlyL( - c)'(s)f] (x) 0
-

n- bounded whilst lin
only on the set [O, 1, and since by Lemma I and (A.8) ICn()l an, ZII;r(s)fil
are both uniformly h,,unded we conlude Zr- s)[ )f] (x)ds[ = (2.27) E Iv

lfV'n(t f

IEx [(Cn - ()T(s)fL(Yn(t - a))ds[ < c'E[ [[O where c' = turning now to the 7

and when d 0.
,,p c nT(s) f (x)j I T(:;). I(x)[l}. We now apply Lemma 2 and choose 6 so small
nO - If In-s Case 1: d = lim

that lir sup EX  I[o s < C , c frowa which it follows at once that n.
o

Iin f;up 11Irn(t)f(x) - r(t)f(x)[I - uniformly for t f: compact suhsets of R
.  tn I.he:A 4: For ver

nthe weak infinitesi:i

We new tarn to the proof o. Lmaa 3. Following Yam-ada let Y (t) denote then PROOF: See Ilurriso:: -

str,,%e process with r (x) = n > 0 and r (0) 0. Since ? (x) _ rnip)
nn f (x) is Lipschitz

it is clear that y (t) > Y(t) nd in particular o][1 on [O,n ]. Thus,

-[ o] (Y n( i)) s E "[ ](Y (s))dsJ (2.28 ) 'f (x)

'hus to prove i.eina 3 it suffices to prove that

(2.22) Uri sup Fj t o O,],(n(s)1dS < V (
n Cn Gf (x) _

It is convenient to split the proof into two parts:t
(2.23) tm E( ft 1r(Us))ds = 0

n 
.  

Now for large

It  on (0,o] provided
(2.24) lim 'sup Ex  I(O, 3 (Y5))ds < E

'r n(t)f ( x) - f (x)
nIt

PROOF OF (2.23): The infinitesimal generator G' of Y (t) is other hand E4G'.•~~f n- xo
n o

C'~x (~~ )f'(x) + n) f'f(x +4 y f (x) (lln(y), x > 0 X Cn f( (s))

o C.fa(n(S)I[L

0
Applying Dynkin's formula as in Theorem 3.1 p. 216 of Rosenrantz (1981), val (0,1] however,

leads to the formula

t >~~ (dj2at)Ex IOc]
-
"

(2.25) E(q(t)) =x- (Vn/kn)(rn (,rnnrn)rn Fx I ](Yn(S))dsj .

In the appendix It will be shown that sup Ex(Yn()) n( far every t > 0 and lim Sur

hence O<s<t n-
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r imply (2.26) (.Al/kn)tn E. [ o (Y(s) )dsj E(Y (t ) -x+ (-/k )(r - )r.

By (2.7) lit (t/k ) (r -) )t = dt so the rdght hand side of (2.26) is
-. C)(s)f]J(x) 9 0 n- n II n

bounded whilst ir (.1/k.) r + , consequently
and Ic, T(s)i ) n-

f](x)dsl = (2.27) Ex [ Io] (Y(S))ds j ( - 1 12).

.,*:ere c = lurning now to thit proof of (2.24) we must consider .ipiar tely the case when d > 0

and when d 0.
.ose 6 so snall Case 1: d I ir (nn/kn)(r - cn ) > 0.0 .-,W,'Sat 011cv' that n- aR

4
"ao th .EMMA 4: For every " > 0 the function f [x) = [l - &x/ )]+ is in the domain of

7,.cd t q ofthe weak infinitesimal generator Wn'

Ct )dntv the PROOF: See arrison-Resnick (1976). (If course an extension of G' and

W t) r W n n -l
n f (x) is Lipschitz conti uous with If (x + y) - '(x- < y " , '(x) -

Qi ct
oil [0,]. Thu--:,

(2.28) cf (x) = / X + n n  f x + y) - f (x)ldl (V), 0 x r ,<

(229 uc nO) '-o C.R/ li! 'l 0 "x<

(2.29) W = 0, 0 . In particular

G~I (x) > (ItW /k )rn *u-i n  -1 ydlI')

i -(,/kn)(r - 'n ) o" (O,t .

Now for large n, CAT/k )(r - ) > d/2 > 0 ae This implies 'f,,
(
x) > d/2,

on (O,a) provided n is large enough. Notice that x)l- I and hencet.t

T Ct) C x) - C x) '- T "n ) C'f (x) ds is 0 . 2. Or the

o t h e r h a n d E I V f ( t' ( ;) d s = F ;r f ,( n s ) ) o C s ) ) d s
0) 0

y ) . I × + O E x ( s ))( (s) ) . F r o m ( 2 . 2 7 ) a n d w29 ) w e s e e a t o n c e t h a t

[ ( t ; ) ) I o ) is b oir dcd , b y M s; , " . n . . O n the in te r-nI~ u ("( )' °,](Cn( a
7n1 (198 ) Val (0, 1] how ver, fC (x) ? d/2t) aMnl thorefore G fC ))

n(, Ci .d/2.) x l (o ,, (s)ds . 1 herefore as n we t t

(-ev y a h arid Iin 'sUP Exf I (1i] C% Cs))dsl (2 A N)2x/ .

---- : -: . - . .- - .. .7 - - -, . -: .: :. .. . . .:- .-

n o
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11- 1
1 
o i I I Ii ' mI I -,qIti e l v l'.e i rig -1ui/(4 + 2M1). APP'ENDI X

(i'2: d 0. 1n thOfis it&C I, i I C' fks) "(Il?)fU(x) f-ir every f D 1(G) LetL [3f(x)

* act in ('in t hi donnIi'
(4 t u) L[%,' i~t Ill rug inlLi rut '',1- is re':1.'c in; Brownlan (1970) that B act.

* lt i 01 W(t) .11hiW; U t tial'''ier1i'Otiterei It;I imiie- th-at CnT4rIetit.

-- ~~~ I .'K(y r) ()) h . It i:; aI 'iinseijtieii of a tlie,'eii, of Aidons t in:ate Was :uI'.n oh:

P)('78) thui Yl t) ,''v'r:;..iklv to !w(t) Ior if ,noi pri.fer,th 1)44 wak cotivr- a more gc'niral resan:

WC t I' Wil xits'ii t r,!I- It i Ir l Pix' ian "'it inl has a Iloval t ime (Q v(t i and (ETMA: For every

tirfr I I t o) !1; (- t ,v, ).IV t , wir. it .1i) Is joinitly con-suhta

'ii L * J U' (A. I)I i

U' suA ha next. oii';irv tha:

f4 i ned 1)iv ( 2. IS ) and
t clearly D(C) 'l02

Ii 'o '1. 1 '~ ?V '' .IIe: mn.Iu''d ('i1 4t,'i'] by thle ! t (.1K : h,-re e:x

- :t Iv. It. f-,. krnos'x that thfe functional tetoi~ni1Iy

)f', rt - a puli inl 140 ,V], is eontimons almost every- (A.2) 1ull

''.i t 1 r'..' t to' t: 1 ,:' or P , 'f. B I iif gslIe v (I f)8) , pp1). 230 -2 3 1. Th is

'It''; tlir 1 it tho W' Ik r'''.'t''o P, t,' P' ant 'theorem (5.2iii) p). 31 .5j t 3 -se

3 2.0) 1t F. I IY (!)2 1~f I0t ffi~') !)cs < F. [1PROOF: Let I[:

r-, tr iirIi ...ru' is' 01 conplete. dirk,k-l] whr

lifhe procof o Iif , in -

([.13).iig A.3)t

If nlow f C C'

1 hence

(A. 5) lfi~k

*kIk

- -- --
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APPE:NIX

Let B1 (Y.) =(1/2) ["(x) + (I Ix)f (x) , -(1 /2) denote the l 'ssel operator
factinug on tOw dom-ain 11(1) = f *. c2(R ) :f'(0) 01. it wg.o; sliowia in1 Brez7is, et al.

1.tn IIvi$2(1971) that B acting, on 1) (B) genecrato-s a positivits. prt<crvint,_ s tron)lv con-

Utv[MMA: F-or t'vt'tV f E Il(B) th-e vi.' st cosatC 0 Vcidnml;o

Such that

(A.1) i r .'

We nlext obscrve t hat tilt' optlat or GCf --- '1,f + C f whlte B is Bessecl operator de:-
AL itfilled 

t
Sy (2.15) and cf -df' , i .U. , G is a ;''rtl'rlatien1 If tlw Opt'rater B;

clearly 1) C)a f(B) .

tx 1 I ) TIIEIIEM: 1'lite exist cons;tants a ',0, 0 bt < 1/2 stich that fot everY f cI(fl)

it si!thle inecqual itv

(A.2) c ; ! + jbtj ols

* 2 si. .3. 'I *.t'REMA*RK: Will, (A.2) hlld-. the cljeratcr C is said to I-c jit'ti ':ldu:

p. 'LCSpcc 'i'c B - ste Kato ( 1976), p. 190.

PR~oi IA tt lgun i(x)! atnil 11'Tvt' tilnt fot C (,:4

6 SiK'~ k HI ver tlle sup is taknin ow r all trion-Iitea I< , 1 ?.ll '~r Tl,,

I he 1)r1otd' o f ilie qua I it\', (A. 3) 1),e1ow is to 1,, fou nd itit K. it, o p. c it. 1. 92, f o rri11.:

(A.3) f'' 1 ~J' [(h '- a)/1 + 2)T +'2[ + I11 )(b - !

Ufor vvr f c [a ,i] .ini ever.' it 1

SpeclalI iz,.ingt (A. 3) to thet splcia iant [a ,J-[k ] ieds

(A.4) I 1 [k kl 1 (14 +[~kI

C0 (R ~ I; [k,k4 i] f: k , [I,+ i

(A.S)~ Ii kk I (n1 2) f 'K* 2(11 1 )fr
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*:i;ejlulntly for every f , D(I) we have l! (:oF OF (A. 9):

f *i1 = 11 I 'I t'lk~kf • (nA- 2)-l i'll I- 2(,+ l)iIfI1 ai in particular C '11(t, x)Hf ' p !'f( + 2 +a l
kn

<.x. ) CI': ! "' 4(n,+ 2d (n," I il <.(, ]> ] dL : (n,+ e - l l 2 2d(n l-1)!1IIl

wherte we used (A.1) in the last ;tep. lu:; [(L' t) + G;)

Ihu; bv cl uoe;ing n > ';d - 2 we have 1 ! FI(n + 22) and this colmpletes .upo'[2art igale. I"

thc' proof (A.2) with a 2d(n+ 1). []

lle tllil l e;tiate is also anl easy consequence of the above cal-

kill.t ion:

1) . +', .,or " "(: T ,, n I. o lldl

I"'t :F: Since Bf = (If - f wo hive from (A.1) and (A.6) that

" .(;f' + d. . " I- d(n+e 1-1'f"! + 2 I,,'(n I>l fl. Since 'd(n+2)-1<1

CI - ::,I(n F2) ;1) l, < L.. C +I 2.- (n I- -)1lli and hence

, I 2!. Cfl - ,:.:d(n + 1 )1 [ t. 1

C,:ombining Il I the,e estimates together with Theorem 2.7 of Kato p. 501 we

arrive at the

i , f E.MH: The operator C = B + C generates a positivity preserving, strongly con-

L i !s centIL rac t ton semi group I(t):C 0 (R C (R 
+
) with domain D(G) = D(B) =

CR ) :f'(0) O}. Moreover for every f c D(i;) we have the following

V_ s. t ilai. tC: ill "- 2. t l A-+ 4- d(n- i)Ilfl . In particular if f D(G) then

D(;) anI therefore

(A.3) j( ,-/x)r )f( Cx) i < . t 'Hl i- 4;,(n + 1)11 ll

. l ( s);ll A 4<, i -!) tl

- A, 4!1(n A I )II fi.

W,- have used the facts that T(s) commtes with its infinitesiumal generator G

md that T(s) is a contraction. Notice that the right hand is iadependent of s.

We next turn our attention to deriving the estimate:

(A.9) Sup : (Y (s) 2
) < x

2 
A t.

O<s<t

liis; Cloarly implics Sup E (Y (!)) < which is all we needed to derive (2.27).
Os<t X n
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PROOF OF (A.9): Let U(t,x) -x t and observe that

-n particular GU(t,x) = -2(vrn/k n)nx 4- nXn 10 (2xy + y2)dHn(Y)

'd(n+ )11fl = 1 - (2rn/kn)x( n - +) 1 on
n~x n P)<1 iR

Thus [(3U/3t) + C']U(t,x) = -1 + GnU(t,x) < 0; consequently Yn(t) - t2 is an 2 2 - x2
and this completes supermartingale. Thus Ex (Y(t) - t) < x or E x(Y n(t)) < + t.

S:"of the above cal-

Ince Pd(in + 2)

:,ato p. 501 we

.-ing, strongly con-

D(C) "-l(B)

_::e following

-f f c D(G) then]

-I generator G

independent of s.

i to derIve (2.27).

I

I.. " " . . " , - . . " "" " ' , " " " " ' . . " - -' " " ". . . . ' "" ; . " " " --" , .;. '' '.
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one notes that (1.1) F Cx) a P((u/o)W(ncx) < x) * PC sup2  y n.(t)< x" where is a certain stochastic processp n~~cz -- 0,. t<01-n - "Y t

I wth continuous paths. One can then show, formally at least, that (1.2) lim yn,r (t) - y(t) where y(t) - w(t) - t.

IHere w(t) Is the standard 1-dimensional Wiener process . 0
1
er and so y(t) is the Wiener process with negative drift. It follows

at once from (1.2) that (1.3) lim P( sup ya(t) < x) . P( sup y(t) < x) and an easy calculation, see e.g.

Jn" , o-O O_(t_'n O<t<-.
Karlin-Taylor (1975), p.

3 6 1
. yields the result that P( sup y(t) , x) - 1 - exp(-2x), 0 < x < . Another and simpler example

OAte reae

of a heavy traffic limit theorem is the following: let Nn(t) denote the queue size of an MH/Ml queue with arrival rate

*n. mean service time distribution U-I and traffic intensity p - n/V Assume A =
6-12n n n 2n* n

S6n
1 /2  

for some 6 > 0, so 0 < 0 n 1 and denote by o2 the variance ofn n n

the service time distribution which In this case equals li-2 .n

TtEORFM 2: Assume X - lim X = l m i = Pn so lim P + 1, and lim On 0

n" n n n. n-.. -

then lim N (nt)/.'7 = y(t) where y(t) is the Wiener process on R+ - [0,00) withn
n- 2 3

variance X + o 1 , negative drift 6 and reflected at the origin. Theorem 2 has

been extended in many ways and by many authors including Iglehnrt and Wbitt. The

survey article by Whitt (1974) is a useful reference for the reader interested in

these developments.

In each of the heavy traffic limit theorems cited above the limit process has

turned out to be the Wiener process with a ne,;ative drift satisfying, where appro-

priate, a reflecting boundary condition. Rectntly Yamada (1982) has given a dif-

fusion approximation for a sequence of storage processes X it) where the limitn

process Y(t) is no longer a Wiener process with a negative drift but is instead

a Beqsel process with negative drift. This result is of more than routine interest.

It shows for example that the set of possible limit processes that can occur in

aueuinv and storage theory is a much larger class than Theorems 1, 2 and the sur-

vey article by Whitt (1974) would lead us to believe existed. In addition Yamada's

theorem (a precise version of which will be stated below as Theorem 3) offers a

challenge to the traditional methods by which such limit theorems are usually

proved. In particular, neither the Trotter-Kato-Kurtz method cf Kurtz (1969) nor

the martingale method of Papnicolaou, Stroock and Varadhan (1977) are directly ap-

plicable to this limit theorem because of some nontrivial terhnical problems of

independent interest and the solutions of which are also of independent interest.

It is the purpose of this paper to give a new and simpler proof of Yamada's theorem

using some results due to Brezis, Rosenkrantz and Singer, with an appendix by

P. D. Lax, (1971) which, restated in the more modern terminology of today, implies

that the martingale problem for the operator corresponding to the Bessel process

with drift has a unique solution - see Stroock-Varadhan (1979) and Ikeda-Watanabe

(1981) for a general discussion of these ideas. It turns out however that the es-

timates we needed to make the martingale methods work already imply the strong con-

vergence of the semigroups in the sense of Trotter-Kato - see Theorem 4 below.

These as well as other results from Functional Analysis are collected in an appen-

dix. We shall also use the standard notations: C (R
+
) ( ff: f bounded and con-4 0

tinuous on R- [0-
O
.) and lim fix) - 01 fi('ix) - Ith derivative of f, C (R+).

__ 0

f C C0 (R+):f C0 (R), 17 _ < k). We make C o(R
+
) into a Banach space in the

usual way by giving it the norm si1l - sup lf(x)I. The symbol I denote* the
0<X <.P

end of a proof.
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